Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 39(5): 1470-1486, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34309780

RESUMO

Nowadays, researchers pay a vast deal of attention to neural tissue regeneration due to its tremendous effect on the patient's life. There are many strategies, from using conventional autologous nerve grafts to the newly developed methods for reconstructing damaged nerves. Among the various therapeutic methods, incorporating highly potent biomolecules and growth factors, the damaged nerve site would promote nerve regeneration. The aim was to examine the efficiency of a mesenchymal stem cell condition medium (MSC-CM) loaded on a 3D-polycaprolactone (PCL) scaffold as a nerve conduit in an axotomy rat model. Twenty-four mature male rats were classified into four groups: controls (the animals of this group were intact), axotomy (10 mm piece of the nerve was removed), axotomy (10-mm piece of the nerve was removed) + scaffold, and axotomy (10-mm piece of the nerve was removed) + MSC-CM-loaded scaffold. We followed up nerve motor function using a sciatic function index and electromyography activity of the gastrocnemius muscle. At 12 weeks post axotomy, sciatic nerve and dorsal root ganglion specimens and L4 and L5 spinal cord segments were separated from the rats and were analyzed by stereological, immunohistochemistry, and RT-PCR procedures. The rats of the axotomy group presented the expected gross locomotor deficit. Stereological parameters, immunohistochemistry of GFAP, and gene expression of S100, NGF, and BDNF were significantly enhanced in the CM-loaded scaffold group compared with the axotomy group. The most observed similarity was noted between the results of the control group and the CM-loaded scaffold group. Our results support the potential applicability of MSC-CM-loaded PCL nanofibrous scaffold to treat peripheral nerve injury (PNI).


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/fisiologia , Nanofibras/administração & dosagem , Regeneração Nervosa/fisiologia , Poliésteres/administração & dosagem , Neuropatia Ciática/terapia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Masculino , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/fisiologia , Neuropatia Ciática/patologia , Tecidos Suporte
2.
Neurotox Res ; 39(2): 413-428, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32852719

RESUMO

According to the studies, damages to the peripheral nerve as a result of a trauma or acute compression, stretching, or burns accounts for a vast range of discomforts which strongly impressed the patient's life quality. Applying highly potent biomolecules and growth factors in the damaged nerve site would promote the probability of nerve regeneration and functional recovery. Tissue plasminogen activator (tPA) is one of the components that can contribute importantly to degenerating and regenerating the peripheral nerves following the injuries occurred and the absence of this biomolecule hinders the recoveries of the nerves. This technique would guarantee the direct accessibility of tPA for the regenerating axons. Structural, physical, and in vitro cytotoxicity evaluations were done before in vivo experiments. In this study, twenty-four mature male rats have been exploited. The rats have been classified into four groups: controls, axotomy, axotomy + scaffold, and axotomy + tPA-loaded scaffold. Four, 8, and 12 weeks post-surgical, the sciatic functional index (SFI) has been measured. After 12 weeks, the spinal cord, sciatic nerve, and dorsal root ganglion specimens have been removed and stereological procedures, immunohistochemistry, and gene expression have been used to analyze them. Stereological parameters, immunohistochemistry of GFAP, and gene expression of S100, NGF, and BDNF were significantly enhanced in tPA-loaded scaffold group compared with axotomy group. The most similarity was observed between the results of control group and tPA-loaded scaffold group. According to the results, a good regeneration of the functional nerve tissues in a short time was observed as a result of introducing tPA.


Assuntos
Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Ativador de Plasminogênio Tecidual/administração & dosagem , Tecidos Suporte , Animais , Axotomia , Células Cultivadas , Masculino , Camundongos , Ratos , Nervo Isquiático/patologia
3.
Neural Regen Res ; 14(10): 1833-1840, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31169202

RESUMO

The spatial arrangement of the cell is important and considered as underlying mechanism for mathematical modeling of cell to cell interaction. The ability of cells to take on the characteristics of other cells in an organism, it is important to understand the dynamical behavior of the cells. This method implements experimental parameters of the cell-cell interaction into the mathematical simulation of cell arrangement. The purpose of this research was to explore the three-dimensional spatial distribution of anterior horn cells in the rat spinal cord to examine differences after sciatic nerve injury. Sixteen Sprague-Dawley male rats were assigned to control and axotomy groups. Twelve weeks after surgery, the anterior horn was removed for first- and second-order stereological studies. Second-order stereological techniques were applied to estimate the pair correlation and cross-correlation functions using a dipole probe superimposed onto the spinal cord sections. The findings revealed 7% and 36% reductions in the mean volume and total number of motoneurons, respectively, and a 25% increase in the neuroglial cell number in the axotomized rats compared to the control rats. In contrast, the anterior horn volume remained unchanged. The results also indicated a broader gap in the pair correlation curve for the motoneurons and neuroglial cells in the axotomized rats compared to the control rats. This finding shows a negative correlation for the distribution of motoneurons and neuroglial cells in the axotomized rats. The cross-correlation curve shows a negative correlation between the motoneurons and neuroglial cells in the axotomized rats. These findings suggest that cellular structural and functional changes after sciatic nerve injury lead to the alterations in the spatial arrangement of motoneurons and neuroglial cells, finally affecting the normal function of the central nervous system. The experimental protocol was reviewed and approved by the Animal Ethics Committee of Shahid Beheshti University of Medical Sciences (approval No. IR.SBMU.MSP.REC1395.375) on October 17, 2016.

4.
Eur J Transl Myol ; 29(1): 7945, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31019660

RESUMO

The aim of this study was to evaluate changes of both peripheral motor function and histology of spinal anterior horn in adult rats after unilateral sciatectomy. Ten adult healthy rats served as control group, while in the ten rat experimental group the right sciatic nerve was severed. We followed-up nerve motor function using a sciatic function index and electromyography activity of the gastrocnemious muscle. The rats of the experimental group presented the expected gross locomotor deficit and leg muscle atrophy. At 12 weeks post sciatectomy, L4 and L5 spinal cord segments were removed from the twenty rats and were analysed by istological stereological methods. In the axotomized animals volume of the anterior horn and its content of motor neurons decreased, while the content of astrocytes increased (p < 0.05). Thus, in adult rats, beside the obvious peripheral nerve disfuction, the sciatic nerve axotomy have severe consequences on the soma of the injured motor neurons in the spinal anterior horn. All these quantitative analyses may be usefull to quantify changes occurring in adult animals after axotomy and eventual management to modify the final outcomes in peripheral nerve disorders.

5.
Asian Pac J Trop Med ; 7S1: S301-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25312141

RESUMO

OBJECTIVE: To evaluate the the possible neurotoxic effects of sulfite and the protective potential of curcumin on the deep cerebellar nuclei using stereological methods. METHODS: The rats were randomly divided into five experimental groups (n=6): Group I: distilled water, Group II: Olive oil, Group III: Curcumin (100 mg/kg/day), Group IV: Sodium metabisulfite (25 mg/kg/day), and Group V: Sodium metabisulfite+curcumin. At the end of 56 d, the right cerebellar hemispheres were removed and assigned to stereological studies. The total volume and total neuron number of deep cerebellar nuclei were assessed using Cavalieri and optical disector methods, respectively. RESULTS: The data showed ∼20% and ∼16% decrease was respectively observed in the total volume and the total neuron number of the deep cerebellar nuclei of the sulfite-treated rats in comparison to the distilled water group (P<0.04). However, no significant change was observed in the total volume and neuronal number of the deep cerebellar nuclei in sulfite+curcumin-treated rats and curcumin played a protective role against sulfite. Curcumin or its vehicle (olive oil) did not induce any significant changes. CONCLUSIONS: Curcumin, the main part of the turmeric, could prevent the structural changes induced in the deep cerebellar nuclei by sodium metabisulfite, a preservative agent, in rats.

6.
Exp Neurobiol ; 22(1): 23-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23585719

RESUMO

Sodium metabisulfite is used as a disinfectant, antioxidant, and preservative agent in the food, beverage, and drug industries. Neurons are highly sensitive to sulfite toxicity. Curcumin is the main part of turmeric and has neuroprotective effects on a variety of nervous system damages. The present study aimed to investigate the possible protective role of curcumin in learning and memory after exposure to sulfite in rats. The rats were divided into five groups receiving distilled water (solvent of the sulfite), olive oil (solvent of the curcumin), sodium metabisulfite (25 mg/kg/day), curcumin (100 mg/kg/day), and sulfite + curcumin. All the animals received daily gavages for 8 weeks. At the end of the 8(th) week, learning and memory were assessed in a partially-baited eight arm radial maze. The animals treated with sulfite showed fewer correct choices and more reference and working memory errors during the learning phase, at the end of the learning phase, and during the retention testing (p<0.001). The study results demonstrated that sulfite-exposure was associated with impaired learning and memory in rats. Adding curcumin to the rat nutrition plays a protective role in learning and memory after exposure to sulfite.

7.
Exp Neurobiol ; 22(4): 258-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24465141

RESUMO

Sulfites are used as anti-microbial and anti-oxidant agents in the food and pharmaceutical industries. Curcumin, a flavonoid, is an Asian spice that shows neuroprotective activities. The current study aimed to stereologically assess the rats' cerebellar cortex and rotarod performance following sulfite exposure and determine the possible neuroprotective potential of curcumin. The rats were divided into five groups: distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sodium metabisulfite+curcumin. At 56 days after treatment, rotarod performance was tested, and then the cerebellum was removed for stereological analysis. The study results revealed 31%, 36%, 19% and 24% decrease in the total volume of the cerebellum, cortex, the total number of the Purkinje cells and length of the nerve fibers in the cortex per Purkinje, respectively in the sodium metabisulfite-treated rats compared to the distilled water group (p<0.01). The pre-trained animals on the rotarod apparatus were tested first on the fixed speed rotarod protocol followed by the accelerating rotarod protocol two days later. The results showed a significant decrease in the latency to fall in both test in sulfite-treated rats. The sulfite effects on the structural parameters and rotarod performance were significantly protected by the concomitant curcumin treatment (p<0.001). Sulfite can induce structural and functional changes in the rats' cerebellum and concomitant curcumin prescription plays a neuroprotective role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...